Kamis, 24 Desember 2015

RPP SMP_MATEMATIKA



RENCANA PELAKSANAAN PEMBELAJARAN
(SATU PERTEMUAN)

Nama Sekolah                                   : SMP NEGERI 1 TES
Mata Pelajaran                                 : Matematika
Kelas/Semester                                : VII/Satu
Jumlah Pertemuan seluruhnya            : 7 pertemuan
Alokasi Waktu  seluruhnya               :  17 jam @ 40 menit 
Pertemuan ke                                : 1 dari 7 pertemuan
Alokasi Waktu  Pertemuan ke-1                :  2 jam @ 40 menit 
A.   Kompetensi Dasar: 
 
1.    Menunjukkan perilaku ingin tahu dalam melakukan aktivitas di rumah, sekolah, dan masyarakat sebagai wujud implementasi penyelidikan tentang persamaan dan pertidaksamaan linear.
2.    Menyelesaikan persamaan dan pertidaksamaan linear  satu variabel.
3.    Membuat dan menyelesaikan model matematika dari masalah nyata yang berkaitan dengan persamaan dan pertidaksamaan linier satu variabel.

B.     IndikatorPencapaian Kompetensi
Siswa mampu:
1.    menunjukkan rasa ingin tahu dalam melakukan penyelidikan tentang persamaan dan pertidaksamaan linear.
2.    bertanggungjawab dalam kelompok belajarnya;
3.    mengidentifikasi unsur-unsur bentuk aljabar;
4.    menyusun bentuk aljabar;
5.    melakukan operasi bentuk aljabar (penjumlahan, pengurangan, perkalian, pembagian, perpangkatan);
6.    menentukan nilai variabel dari suatu persamaan linear satu variabel;
7.    membuat model matematika dari masalah nyata yang berkaitan dengan persamaan linear satu variabel;
8.    menyelesaikan model matematika dari masalah nyata yang berkaitan dengan persamaan linier satu variabel;
9.    menentukan nilai variabel dari suatu pertidaksamaan linear satu variabel;
10. membuat model matematika dari masalah nyata yang berkaitan dengan pertidaksamaan linier satu variabel;
11. menyelesaikan model matematika dari masalah nyata yang berkaitan dengan persamaan dan pertidaksamaan linier satu variabel;


C.     Tujuan Pembelajaran
Melalui pengamatan, tanya jawab, penugasan individu dan kelompok, diskusi kelompok,  siswa dapat: mengembangkan rasa ingin tahu dan tanggungjawab kelompok dalam:
Pertemuan-1(2 × 40 menit)
1.    menunjukkan ingin tahu selama mengikuti proses pembelajaran
2.    bertanggungjawab terhadap kelompoknya dalam menyelesaikan tugas
3.    mengidentifikasi unsur-unsur bentuk aljabar yang melibatkan peristiwa sehari-hari;
4.    mengidentifikasi unsur-unsur bentuk aljabar yang melibatkan konsep matematika;
5.    menyusun bentuk aljabar yang melibatkan peristiwa sehari-hari;
6.    menyusun bentuk aljabar yang melibatkan konsep matematika.
Pertemuan-2 (3× 40 menit)
1.    menunjukkan ingin tahu selama proses pembelajaran
2.    bertanggung jawab terhadap kelompoknya dalam menyelesaikan tugas
3.    mengidentifikasi suku-suku sejenis dan tidak sejenis;
4.    melakukan penjumlahan dan pengurangan bentuk aljabar;
5.    melakukan perkalian dan pembagian bentuk aljabar;
6.    melakukan perpangkatan bentuk aljabar.
Pertemuan-3(2 × 40 menit)
1.    menunjukkan ingin tahu selama proses pembelajaran
2.    bertanggungjawab dalam kelompoknya dalam menyelesaikan tugas
3.    menyusun persamaan linear satu variabel yang melibatkan konsep matematika;
4.    menyelesaikan suatu persamaan linear satu variabel.
Pertemuan-4(3 × 40 menit)
1.    menunjukkan ingin tahu selama proses pembelajaran
2.    bertanggung jawab terhadap kelompoknya dalam menyelesaikan tugas
3.    membuat model matematika dari masalah nyata yang berkaitan dengan persamaan linear satu variabel;
4.    merumuskan masalah nyata berdasarkan model matematika yang berkaitan dengan persamaan linear satu variabel;
5.    menyelesaikan model matematika dari masalah yang berkaitan dengan persamaan linear satu variabel.
Pertemuan-5 (2 × 40 menit)
1.    menunjukkan ingin tahu selama proses pembelajaran
2.    bertanggungjawab terhadap kelompoknya dalam menyelesaikan tugas
3.    menyusun pertidaksamaan linear satu variabel yang melibatkan konsep matematika;
4.    menyelesaikan suatu pertidaksamaan linear satu variabel.
Pertemuan-6(3 × 40 menit)
1.    menunjukkan ingin tahu selama proses pembelajaran
2.    bertanggung jawab terhadap kelompoknya dalam menyelesaikan tugas
3.    membuat model matematika dari masalah nyata yang berkaitan dengan pertidaksamaan linear satu variabel;
4.    merumuskan masalah nyata berdasarkan model matematika yang berkaitan dengan pertidaksamaan linear satu variabel;
5.    menyelesaikan model matematika dari masalah yang berkaitan dengan pertidaksamaan linear satu variabel.

Pertemuan-7(2 × 40 menit)
Ulangan harian dan pembahasan.
D.   Materi Ajar Pertemuan Ke-1: 
Siswa SMP/MTs mempelajari Aljabar untuk pertama kali adalah pada Kompetensi Dasar (KD) ini. KD ini dipelajari dalam beberapa kali pertemuan. Ada beberapa tahapan kemampuan berurutan yang harus dilalui siswa dalam mempelajari KD ini, yaitu:
1.    mengidentifikasi unsur-unsur bentuk aljabar (variabel, konstanta, suku, suku-suku sejenis dan tidak sejenis, koefisien) dan menyusun bentuk aljabar;
2.    melakukan operasi bentuk Aljabar (penjumlahan, pengurangan, perkalian, pembagian,  perpangkatan);
3.    menyelesaikan persamaan linear satu variabel;
4.    menyelesaikan pertidaksamaan linear satu variabel.
Kemampuan-kemampuan tersebut berhubungan hirarkis, sehingga tahapan nomor-1 harus ditempuh sebelum mempelajari tahapan nomor 2, tahapan nomor 2 harus ditempuh sebelum mempelajari tahapan nomor 3, dan seterusnya.
RPP ini adalah rancangan pembelajaran yang terkait tahapan nomor 1.
Materi ajar yang dipelajari siswa selama pertemuan pelaksanaan pembelajaran yang menggunakan  RPP ini adalah: Pengertian Aljabar, Simbol Aljabar, Variabel Aljabar, Konstanta Aljabar, Bentuk Aljabar, Suku Aljabar, Koefisien Aljabar.
1.    Aljabar: Aljabar adalah cabang dari matematika yang mempelajari penyederhanaan dan pemecahan masalah dengan menggunakan “simbol”.
2.    Simbol atau Lambang Aljabar:
Simbol adalah huruf atau tanda yang digunakan untuk menyatakan unsur, senyawa, sifat, atau satuan matematika (KBBI). Simbol bilangan disebut angka.  Angka 5 merupakan simbol untuk menyatakan hasil dari mencacah benda sebanyak 5 buah atau hasil menghitung frekuensi kemunculan suatu peristiwa sebanyak 5 kali.
Simbol Aljabar adalah  simbol yang mewakili (menunjuk) sebarang bilangan.  Simbol Aljabar dapat terdiri dari huruf, tanda tertentu, atau bilangan. Pada sebarang simbol Aljabar dapat diberikan nilai (bilangan) tertentu sesuai persyaratan yang dikehendaki.
Contoh-1:
Banyaknya pohon jati milik Pak Amir 10 batang kurangnya dari pohon milik Pak Budi. Berapakah kemungkinan pohon Pak Amir dan Pak Budi?”. Pembahasan:
a.     Untuk menjawab pertanyaan tersebut, dimisalkan banyak pohon Pak Amir diwakilkan kepada simbol Aljabar p, sehingga p ini adalah banyak pohon milik Pak Amir.  Dengan demikian berarti banyak pohon Pak Budi p + 10 batang.
b.    Karena tidak ada petunjuk berapa banyak pohon Pak Amir atau Pak Budi, maka p dapat diganti dengan sebarang bilangan yang menunjukkan banyak pohon. Boleh jadi p mewakili bilangan 10, sehingga banyak pohon Pak Amir ada 10 batang dan pohon Pak Budi ada 10+10 atau 20 batang. Boleh jadip mewakili 15, sehingga banyak pohon Pak Amir ada 15 batang dan pohon Pak Budi ada 15+10 atau 25 batang. 
c.     Masih banyak bilangan lain yang dapat diwakili oleh p, dengan syarat  p dan  p+10 mewakili bilangan banyak pohon yang mungkin dimiliki oleh seseorang. Dalam hal ini tidak mungkin seseorang sampai memiliki satu triliun pohon. 
d.    Kesimpulan: p dapat mewakili bilangan tertentu dengan persyaratan bahwa p dan  p+10 adalah banyak pohon yang memungkinkan untuk dimiliki oleh Pak Amir dan Pak Budi. Semesta pembicaraan adalah banyak pohon yang memungkinkan dimiliki oleh Pak Amir dan Pak Budi.
Contoh-2:
 Tahun ini umur Dika dua kali umur Syauki, sedangkan umur Santi 1 tahun lebih tua dari Dika. Berapakah kemungkinan umur Dika, Syauki,  dan Santi tahun ini?”. Pembahasan:
a.    Umur seseorang dalam tahun menunjukkan hasil mencacah satu kali dalam setahun secara berurutan sejak lahir sampai tahun terakhir kehidupan orang tersebut. Dengan demikian umur menunjukkan bilangan.
b.    Untuk menjawab pertanyaan tersebut maka umur Syauki tahun ini dapat diwakilkan kepada simbol Aljabar U, sehingga U ini mewakili bilangan umur Syauki.  Ini berarti tahun ini umur Syauki U tahun, umur Dika 2×U atau 2U tahun, sedangkan umur Santi (2U+1) tahun.
c.     Karena tidak ada petunjuk berapa umur Syauki, Dika dan Santi pada tahun ini maka U dapat diganti dengan sebarang bilangan yang menunjukkan umur manusia. Boleh jadi U mewakili bilangan 1, sehingga tahun ini umur Syauki 1 tahun, umur Dika 2×1 atau 2 tahun, dan umur Santi  2+1 atau 3 tahun. Boleh jadi U mewakili 5, sehingga tahun ini umur Syauki 5 tahun, umur Dika 2×5 atau 10 tahun dan umur Santi 10+1atau 11 tahun. Masih banyak bilangan lain yang dapat diwakili oleh U, dengan syarat U mewakili bilangan umur manusia dan mengakibatkan U, 2U dan 2U + 1 juga mewakili bilangan umur manusia. 
d.    Kesimpulan: U dapat mewakili sebarang bilangan dengan persyaratan bahwa U, 2U,  2U+1 adalah bilangan umur manusia yang memungkinkan saat ini Semesta pembicaraan kejadian tesebut adalah bilangan umur manusia yang memungkinkan saat ini.
Contoh-3:
Toko buah KURNIA milik Pak Arif mengemas apel dalam kotak-kotak. Setiap kotak berisi  beberapa biji apel yang sama banyak.  Beberapa kotak apel dikemas dalam satu dos besar. Berapa banyak butir apel yang mungkin dalam satu kotak ? Berapa banyak butir apel yang mungkin dalam satu dos besar?Berapa banyak butir apel yang mungkin dalam dua dos besar?Pembahasan:
a.    Misalkan banyak apel dalam satu kotak ada a apel, maka dalam dua kotak ada a + a atau 2a apel, dalam 3 kotak ada a+a+a atau 3a apel.  Jika satu kotak berisi 10 apel, dua kotak berisi 20 apel, dan 3 kotak berisi 30 apel. Ini berarti a mewakili 10 apel.
b.    Bila ada a2 apel, berarti ada a kotak apel yang masing-masing kotak berisi a apel. Alasan: a2 berarti a×a atau (a+a+a+a+...+a) sebanyak a. Jika tiap satu kotak berisi 10 apel, berarti ada 10 kotak apel, sehingga banyaknya apel dalam a2apel  ada 10×10 apel atau ada 100 apel.
c.     Misalkan satu dos besar dapat memuat n kotak apel, berarti n mewakili banyak kotak apel dalam dos besar. Jika ada 2 dos besar berarti dalam 2 dos besar tersebut ada 2×n  kotak apel.
d.    Karena dalam satu kotak apel ada a butir apel, dan dalam satu dos besar ada n kotak apel, maka dalam satu dos besar  ada n×a butir apel dan dalam 2 dos besar ada 2×n×a.
Kesepakatan:
a.    Tanda operasi kali tidak ditulis. Contoh: 3×d  atau 3.d  dan ditulis 3d , A + A = 2. A = 2A
b.    Simbol Aljabar yang berdekatan diartikan sebagai perkalian. Contoh: pq berarti p×q  atau berarti p.q
c.     p2 berarti p×p atau berarti p.p, dan dapat ditulis pp, dengan p adalah simbol Aljabar.
d.    p2p4 berarti p2×p4 atau berarti p2.p4, atau berarti (p.p).(p.p.p.p) atau berarti (p×p)×(p×p×p×p), dan dapat ditulis (pp)(pppp)dengan p adalah simbol Aljabar.
e.    Istilah-istilah yang tergolong simbol Aljabar antara lain adalah variabel (peubah),  konstanta, suku, koefisien, dan bentuk Aljabar. Dalam matematika, istilah-istilah tersebut selanjutnya disebut variabel (peubah), kontanta, bentuk Aljabar, suku, koefisien.
3.    Variabel (Peubah)
      Variabel (peubah) adalah simbol Aljabar atau gabungan simbol Aljabar yang mewakili sebarang bilangan dalam semestanya.
a.    Simbol Aljabar p pada contoh-1, U pada contoh-2, dan a  pada contoh-3 dalam uraian di atas adalah contoh variabel karena p mewakili banyak pohon yang mungkin dimiliki Pak Amir, U mewakili sebarang bilangan umur manusia dan a mewakili banyak butir apel dalam satu kotak.
b.    Variabel (peubah) umumnya disimbolkan dengan huruf kecil atau huruf besar.
4.    Konstanta Aljabar:
Konstanta adalah sebuah simbol atau gabungan simbol yang mewakili atau menunjuk anggota tertentu pada suatu semesta pembicaraan.
a.    Dalam contoh-1 uraian di atas, p adalah variabel dengan p mewakili bilangan yang menunjukkan banyak pohon Pak Amir. p+10 adalah simbol aljabar untuk mewakili bilangan yang menunjukkan banyak pohon milik Pak Budi. Dalam hal ini 10 disebut konstanta karena 10 tersebut menunjuk banyak pohon tertentu, yaitu 10 pohon.
b.    Dalam contoh-2 uraian di atas, U adalah variabel dengan U mewakili bilangan yang menunjukkan umur Syauki. 2U adalah simbol aljabar untuk mewakili bilangan yang menunjukkan umur Dika. 2U+1 adalah simbol aljabar untuk mewakili bilangan yang menunjukkan umur Santi. Dalam hal ini 1 disebut konstanta karena 1 tersebut menunjuk umur tertentu, yaitu 1 tahun.
c.     Catatan: Bila dijumpai konstanta negatif, misalnya dalam bentuk  x- 100, dengan konstanta -100, maka konstanta negatif tersebut tidak perlu dikongkretkan. Dalam proses pembelajaran, konstanta negatif tersebut sudah menjadi ranah pembahasan matematika vertikal yaitu pembahasan tentang konsep matematika secara abstrak.
5.    Suku Aljabar:
a.    Suku dapat berupa sebuah konstanta atau sebuah variabel. Suku dapat pula berupa hasil kali atau hasil pangkat atau hasil pernarikan akar konstanta atau variabel, tetapi bukan penjumlahan dari konstanta atau variabel.
b.    Suku-suku sejenis adalah suku-suku yang variabelnya menggunakan simbol yang sama, baik dalam huruf maupun pangkatnya. Bila a dan b adalah variabel, maka a, 2a, 10a adalah suku-suku sejenis, a dan 2b suku-suku tidak sejenis.
c.     Pada contoh-1 uraian di atas, p dan 10 masing-masing disebut suku. Pada contoh-2 di atas U, 2U, 1  disebut suku, dengan U dan 2U disebut suku sejenis. Pada contoh-3 di atas, a, 2a, 3a, an, 2an disebut suku.  a, 2a, 3a adalah suku-suku sejenis. an dan2an juga suku-suku sejenis.
6.    Koefisien aljabar:
Koefisien adalah bagian konstanta dari suku-suku yang memuat atau menyatakan banyaknya variabel yang bersangkutan. Pada contoh-1 uraian di atas, koefisien dari p adalah 1 (satu). Pada contoh-2,  koefisien dari U adalah 1, koefisien dari 2U adalah 2 dan koefisien3U adalah 3. Pada contoh-3, koefisien dari 3 adalah 3.
7.    Bentuk Aljabar:
a.    Bentuk aljabar adalah semua huruf dan angka atau gabungannya yang merupakan simbol aljabar. Penjumlahan, pengurangan, perkalian, pembagian, perpangkatan atau penarikan akar dari satu atau lebih simbol aljabar juga merupakan bentuk aljabar.
b.    Bentuk Aljabar dalam x berarti bentuk Aljabar dengan variabel x, sehingga simbol lainnya (huruf atau angka) bukan merupakan variabel.Contoh:
1)    3x +5 adalah bentuk aljabar dalam x.
2)    5 − y adalah bentuk aljabar dalam y.
3)    ax +bx +c adalah bentuk Aljabar dalam x, dengan a, b, c bukan variabel, tetapi konstanta. Dalam hal ini konstanta a dan b disebut koefisien, sedang c disebut konstanta.
4)    p2 adalah bentuk aljabar dalam p.
c.     Pada contoh-1 uraian di atas, p dan p+10 masing-masing merupakan bentuk aljabar. Pada contoh-2 di atas,  U, 2U, dan 2U+1 masing-masing merupakan bentuk aljabar. Pada contoh-3, a, 2a, 3a juga merupakan bentuk aljabar.
d.    Bentuk Aljabar terdiri satu suku disebut suku satu. Contoh: 3y, x2, - 4x. Bentuk Aljabar terdiri dua suku disebut suku dua (binom). Contoh: x2− 4, 5y+6.
Daftar Bacaan
Krismanto.Al. 2009. Kapita Selekta Pembelajaran Aljabar Di Kelas VII SMP. Modul Matematika SMP Program BERMUTU. Yogyakarta: PPPPTK Matematika.
Sri Wardhani.2004. Permasalahan Kontekstual Mengenalkan Bentuk Aljabar di SMP. Paket Pembinaan Penataran Bagi Alumni Diklat Guru Matematika SMP oleh PPPPG Matematika Tahun 2004. Yogyakarta: PPPPG Matematika

E.    Metode Pembelajaran Pertemuan Ke-1
Pengamatan, tanya-jawab, penugasan individu dan kelompok, dan diskusi kelompok.
F.    Kegiatan Pembelajaran Pertemuan Ke-1
Kegiatan
Deskripsi Kegiatan
Waktu
Penda-huluan
1.      Guru memberi salam dan mengajak siswa berdoa;
2.      Guru menanyakan kabar dan mengecek kehadiran siswa serta berdoa;
3.      Siswa mendengarkan dan menanggapi cerita guru tentang manfaat belajar Aljabar dalam kehidupan sehari-hari;
4.      Guru mengkomunikasikan tujuan belajar dan hasil belajar yang diharapkan akan dicapai siswa;
5.      Guru menginformasikan cara belajar yang akan ditempuh (pengamatan dan demonstrasi disertai tanya jawab, latihan individu dilanjutkan kelompok, pembahasan latihan secara klasikal, latihan berpasangan, pembahasan secara klasikal, pemajangan hasil latihan)
6.      Guru mengecek kemampuan prasyarat siswa dengan tanya jawab
15 menit
Inti
1.    Siswa mengamati, mencermati dan menjawab pertanyaan terkait contoh peristiwa sehari-hari yang berhubungan dengan simbol Aljabar (ada 3 contoh);
2.    Siswa menganalisis, menalar,  mencoba dan menyimpulkan pengertian dari simbol Aljabar variabel, konstanta, suku, koefisien, bentuk Aljabar berdasarkan hasil pengamatan dan tanya-jawab pada sajian contoh peristiwa sehari-hari yang berhubungan dengan simbol Aljabar;
3.    Secara individu siswa menyelesaikan tugas Latihan-1 tentang menyusun dan mengidentifikasi unsur-unsur bentuk Aljabar yang melibatkan peristiwa sehari-hari dan konsep matematika;
4.    Secara kelompok, siswa berdiskusi membahas hasil tugas Latihan-1. Anggota  kelompok saling memeriksa, mengoreksi dan memberikan masukan;
5.    Beberapa siswa wakil kelompok (minimal tiga orang) melaporkan hasil penyelesaian Latihan-1. Siswa tersebut ditunjuk secara acak oleh guru;
6.    Siswa dan guru membahas hasil penyelesaian Latihan-1. Guru memberikan umpan balik;
7.    Secara berpasangan siswa menyelesaikan Latihan-2 tentang menyusun dan mengidentifikasi unsur-unsur bentuk Aljabar yang melibatkan peristiwa sehari-hari dan konsep matematika;
8.    Siswa dan guru membahas hasilan Latihan-2. Guru memberi umpan balik. Hasil Latihan-2 dipajang di tempat pajangan hasil karya.
60 menit
Penutup
1.      Siswa dan guru merangkum isi pembelajaran yaitu tentang pengertian variabel, konstanta, suku, koefisien, dan bentuk Aljabar. 
2.      Siswa melakukan refleksi dengan dipandu oleh Guru;
3.      Guru memberi pekerjaan rumah;
4.      Guru menginformasikan garis besar isi kegiatan pada pertemuan berikutnya, yaitu mengerjakan kuis tentang mengidentifikasi unsur-unsur bentuk Aljabar dan dilanjutkan belajar melakukan operasi bentuk Aljabar.
5 menit

G.   Penilaian Pertemuan Ke-1
1.    Prosedur Penilaian:
No
Aspek yang dinilai
Teknik Penilaian
Waktu Penilaian
1
Rasa ingin tahu
Pengamatan
Kegiatan inti nomor 1, 2, 6, 8
2
Tanggungjawab dalam kelompok
Pengamatan
Kegiatan inti nomor 3, 4, 5, 7
3
Pengetahuan dan keterampilan matematika
Kuis
Awal pertemuan ke-2
Portofolio Hasil Latihan-2
Akhir pertemuan ke-1


2.    Instrumen penilaian:
KUIS  (Waktu: maksimal 10 menit)
Petunjuk:
1.    Kerjakan soal berikut secara individu, tidak boleh menyontek dan tidak boleh bekerjasama.
2.    Pilihlah jawaban soal kemudian jawablah pertanyaan/perintah di bawahnya.
Soal:
Gambar     mewakili bilangan yang menyatakan banyaknya buku yang dibaca Lina setiap pekan.
Manakah diantara bentuk berikut ini yang menyatakan banyaknya buku yang dibaca Lina dalam 6 pekan?
A.     6 +
B.    6 ´
C.     +   6
D.  (     +          ) ´ 6
a.   Pilihan jawaban: ………….………………………….………………………….………….........................................
      Alasan pilihan jawaban: ……………………………….…………………….…………….......................................
b.      Bilangan apakah yang diwakili oleh  symbol        ? Jawab:…….………….…..……………...........
       Alasan jawaban: …………………………….……………………….………..…………….......................................
c.       Adakah suku pada pilihan jawabanmu ?  Jawab: Ya/Tidak ada*)
Jika ada tunjukkan dan jika tidak ada tuliskan alasannya. Jawab………………………....................
d.     Apakah pilihan jawabanmu merupakan bentuk Aljabar? Jawab: Ya/Tidak*)
Alasan: …………………………………………………………………………………..................................................
e.      Manakah variabel,  konstanta dan koefisien pada pilihan jawabanmu?.
Variabel         :………………………………………………………………………………….................
Konstanta     :…………………………………………………………………………………...................
Koefisien             :…………………………………………………………………………………....................
*) = coret yang bukan pilihanmu
Kunci Jawaban:
a.    Pilihan jawaban adalah B, yaitu: 6 ×          Alasan:                
Dalam 6 pekan, Lina membaca novel sebanyak         + ++      ++ 
atau 6 ×        atau  6
b.      Bilangan bulat positif, karena banyak novel merupakan hasil mencacah banyak benda, yaitu 1, 2, 3, 4, …
c.       Ada. Suku :  6
d.    Ya. Alasan:       mewakili bilangan banyak novel yang dibaca Lina tiap pekan, sehingga      merupakan simbol Aljabar, dan berarti         juga merupakan simbol Aljabar. Oleh karena itu  6 ×       merupakan bentuk Aljabar.
e.      Variabelnya adalah  ,  konstantanya tidak ada, koefisien variabelnya adalah 6.

Pedoman Penilaian:
No Soal
Aspek Penilaian
Rubrik Penilaian
Skor
Skor Maksimal
  1.  
Pilihan jawaban
Benar
10
25
Salah
3
Tidak ada pilihan jawaban
0
Alasan jawaban
Benar
15
Sebagian besar benar
10
Sebagian kecil benar
5
Tidak ada alasan jawaban
0
  1.  
Jawaban
Benar
10
20
Salah
3
Tidak ada jawaban
0
Alasan jawaban
Seluruhnya benar
10
Sebagian besar benar
7
Sebagian kecil benar
3
Tidak ada alasan jawaban
0
  1.  
Pilihan jawaban
Jawaban: Ada 
8
15
Jawaban : Tidak ada
3
Tidak ada jawaban
0

Macam jawaban
Benar
7
Salah
3
Tidak ada jawaban
0
  1.  
Pilihan jawaban
Jawaban: Ya
10
25
Jawaban : Tidak
5
Tidak ada jawaban
0
Alasan jawaban
Seluruhnya benar
15
Sebagian besar benar
10
Sebagian kecil benar
5
Tidak ada alasan jawaban
0
  1.  
Macam jawaban
Tiga jawaban benar
15
15
Dua jawaban benar
10
Satu jawaban benar
5
Semua jawaban salah
2
Tidak ada jawaban
0

Skor maksimal =
-
100

Skor minimal =
-
0
LEMBAR PENGAMATAN PERKEMBANGAN SIKAP
Mata Pelajaran : Matematika
Kelas/Semester               : VII/1
Tahun Pelajaran               : 2013/2014
Waktu Pengamatan        : ..........................................................................
Kompetensi Dasar           :  Nomor  2.2, 3.3, 4.2
Sikap yang dikembangkan dalam proses pembelajaran adalah rasa ingin tahu dan tanggung jawab dalam kelompok.
Indikator perkembangan sikap INGIN TAHU
1.       Kurang baikjika sama sekali tidak berusaha untuk mencoba atau bertanya atau acuh tak acuh (tidak mau tahu) dalam proses pembelajaran
2.       Baik jika menunjukkan sudah ada  usaha untuk mencoba atau bertanya dalam proses pembelajaran tetapi masih belum ajeg/konsisten 
3.       Sangat baikjika menunjukkan adanya  usaha untuk mencoba atau bertanya dalam proses pembelajaran secara terus menerus dan ajeg/konsisten
Indikator perkembangan sikap TANGGUNGJAWAB (dalam kelompok)
1.       Kurang baikjika menunjukkan sama sekali tidak ambil bagian dalam melaksanakan tugas kelompok
2.       Baik jika menunjukkan sudah ada  usaha ambil bagian dalam melaksanakan tugas-tugas kelompok  tetapi belum ajeg/konsisten
3.       Sangat baikjika menunjukkan sudah ambil bagian  dalam menyelesaikan tugas kelompok  secara terus menerus dan ajeg/konsisten

Bubuhkan tanda V pada kolom-kolom sesuai hasil pengamatan.
NO
Nama
Rasa ingin tahu
Tanggungjawab
SB
B
KB
SB
B
KB
1







2







3































...







32







SB = sangat baik    B = baik        KB = kurang baik                                                                                                  
                Lebong Selatan, .................2013                                                                                                                           Pengamat

                                                                            (..............................)
                                                                                                               
H.   Sumber Belajar Pertemuan Ke-1
1.       Bahan informasi tentang pengertian dan manfaat belajar Aljabar;
2.       Daftar pertanyaan untuk apersepsi;
3.       Contoh peristiwa sehari-hari yang berhubungan dengan unsur-unsur bentuk Aljabar;
4.       Bahan latihan-1;
5.       Bahan latihan-2;
6.       Bahan pekerjaan rumah;
7.       Buku Siswa Mata Pelajaran Matematika Jilid VII.

Lebong Selatan,  Mei 2013
                                 Kepala Sekolah                                                                                Guru
                               

     (Hermawan)                                                   (Sri Wardhani)

Tidak ada komentar:

Posting Komentar